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Cognitive neuroscience treats space and time as our brain’s representation of our sensory inputs.
In this view, our perceptual reality is only a distant and convenient mapping of the physical processes
causing the sensory inputs. Sound is a mapping of auditory inputs, and space is a representation of
visual inputs. Any limitation in the chain of sensing has a specific manifestation on the cognitive
representation that is our reality. One physical limitation of our visual sensing is the finite speed
of light, which manifests itself as a basic property of our space-time. In this article, we look at the
consequences of the limited speed of our perception, namely the speed of light, and show that they
are remarkably similar to the coordinate transformation in special relativity. From this observation,
and inspired by the notion that space is merely a cognitive model created out of light inputs, we
examine the implications of treating the special theory of relativity as a formalism for describing the
perceptual effects due to the finite speed of light. Using this framework, we show that we can unify
and explain a wide array of seemingly unrelated astrophysical and cosmological phenomena. Once
we identify the manifestations of the limitations in our perception and cognitive representation, we
can understand the consequent constraints on our space and time, leading to a new understanding
of astrophysics and cosmology.

I. INTRODUCTION

Our reality is a mental picture that our brain creates,
starting from our sensory inputs [1]. Although this cog-
nitive map is often mistaken to be a faithful image of the
physical causes behind the sensing process, the causes them-
selves are entirely different from the perceptual experience
of sensing. The difference between the cognitive represen-
tation and their physical causes is not immediately obvious
when we consider our primary sense of sight. But we can
appreciate the difference by looking at the olfactory and au-
ditory senses because we can use our cognitive model based
on sight in order to understand the workings of the “lesser”
senses. Odors, which may appear to be a property of the
air we breathe, are in fact our brain’s representation of the
chemical signatures that our nose senses. Similarly, sound
is not an intrinsic property of a vibrating body, but our
brain’s mechanism to represent the pressure waves in the
air. Table I shows the chain from the physical cause of the
sensory input to the final reality as the brain creates it. Al-
though the physical causes can be identified for the olfactory
and auditory chains, they are not easily discerned for visual
process. Since sight is the most powerful sense we possess,
we are obliged to accept our brain’s representation of visual
inputs as the fundamental reality.

While our visual reality provides an excellent framework
for physical sciences, it is important to realize that the real-
ity itself is a model with potential physical or physiological
limitations and distortions. The tight integration between
the physiology of perception and its representation in the
brain was proven recently [2] in a clever experiment using
the tactile funneling illusion. This illusion results in a single
tactile sensation at the focal point at the center of a stimulus

∗Electronic address: manoj@thulasidas.com

Sense Physical Sensing Brain’s
modality cause signal model
Olfactory Chemicals Chemical Smells

reactions
Auditory Vibrating Air pressure Sounds

objects waves
Visual Unknown Light Space, time

reality

TABLE I: Brain’s representation of different sensory inputs.
Odors are a representation of chemical compositions and con-
centration our nose senses. Sounds are a mapping of the air
pressure waves produced by a vibrating object. In sight, we do
not know the physical reality, our representation is space, and
possibly time.

pattern even though no stimulation is applied at that site.
In the experiment, the brain activation region corresponded
to the focal point where the sensation was perceived rather
than the points where the stimuli were applied, proving that
brain registered perceptions, not the physical causes of the
perceived reality. In other words, for the brain, there is
no difference between applying the pattern of the stimuli
and applying only one stimulus at the center of the pattern.
Brain maps the sensory inputs to regions that correspond
to their perception, rather than the regions that physiolog-
ically correspond to the sensory stimuli.

The neurological localization of different aspects of reality
has been established by lesion studies in neuroscience. The
perception of motion (and the consequent basis of our sense
of time), for instance, is so localized that a tiny lesion can
erase it completely. Cases of patients with such specific loss
of a part of reality [1] illustrate the fact that our experience
of reality, every aspect of it, is indeed a creation of the brain.
Space and time are aspects of the cognitive representation
in our brain.

Space is a perceptual experience much like sound. Com-
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parisons between the auditory and visual modes of sensing
can be useful in understanding the limitations of their repre-
sentations in the brain. One limitation is the input ranges of
the sensory organs. Ears are sensitive in the frequency range
20Hz–20kHz, and eyes are limited to the visible spectrum.
Another limitation, which may exist in specific individuals,
is an inadequate representation of the inputs. Such a lim-
itation can lead to tone-deafness and color-blindness, for
instance. The speed of the sense modality also introduces
an effect, such as the time lag between seeing an event and
hearing the corresponding sound. For visual perception, the
consequence of the finite speed of light is called the light
travel time (LTT) effect, which offers a convincing explana-
tion to the observed superluminal motion in certain celestial
objects [3, 4]. When an object approaches the observer at
a shallow angle, it may appear to move much faster than
reality [5] due to LTT.

Other consequences of the light travel time (LTT) effects
in our perception are remarkably similar to the coordinate
transformation of the special theory of relativity (SRT).
These consequences include an apparent contraction of a
receding object along its direction of motion and a time di-
lation effect. Furthermore, a receding object can never ap-
pear to be going faster than the speed of light, even if its real
speed is superluminal. While SRT does not explicitly forbid
it, superluminality is understood to lead to time travel and
the consequent violations of causality. An apparent viola-
tion of causality is one of the consequences of LTT, when the
superluminal object is approaching the observer. All these
LTT effects are remarkably similar to effects predicted by
SRT, and are currently taken as ’confirmation’ that space-
time obeys SRT. But instead, space-time may have a deeper
structure that, when filtered through LTT effects, results in
our perception that space-time obeys SRT.

Once we accept the neuroscience view of reality as a rep-
resentation of our sensory inputs, we can understand why
the speed of light figures so prominently in our physical
theories. The theories of physics are a description of real-
ity. Reality is created out of the readings from our senses,
especially our eyes. They work at the speed of light. Thus
the sanctity accorded to the speed of light is a feature only
of our reality, not the absolute, ultimate reality that our
senses are striving to perceive. When it comes to physics
that describes phenomena well beyond our sensory ranges,
we really have to take into account the role that our per-
ception and cognition play in seeing them. The universe
as we see it is only a cognitive model created out of the
photons falling on our retina or on the photo-sensors of the
Hubble telescope. Because of the finite speed of the infor-
mation carrier (namely photons), our perception is distorted
in such a way as to give us the impression that space and
time obey special relativity. They do, but space and time
are not the absolute reality. “Space and time are modes by
which we think and not conditions in which we live,” as Ein-
stein himself put it. Treating our perceived reality as our
brain’s representation of our visual inputs (filtered through
the LTT effect), we will see that all the strange effects of
the coordinate transformation in special relativity can be
understood as the manifestations of the finite speed of our

senses in our space and time.
Furthermore, we will show that this line of thinking leads

to natural explanations for two classes of astrophysical phe-
nomena:

Gamma Ray Bursts, which are very brief, but intense
flashes of γ rays, currently believed to emanate from
cataclysmic stellar collapses, and

Radio Sources, which are typically symmetric and seem
associated with galactic cores, currently considered
manifestations of space-time singularities or neutron
stars.

These two astrophysical phenomena appear distinct and un-
related, but they can be unified and explained using LTT
effects. This article presents such a unified quantitative
model. It will also show that the cognitive limitations to re-
ality due to LTT effects can provide qualitative explanations
for such cosmological features as the apparent expansion of
the universe and the Cosmic Microwave Background Radia-
tion (CMBR). Both these phenomena can be understood as
related to our perception of superluminal objects. It is the
unification of these seemingly distinct phenomena at vastly
different length and time scales, along with its conceptual
simplicity, that we hold as the indicators of validity of this
framework.

II. SIMILARITIES BETWEEN LTT EFFECTS &
SRT

The coordinate transformation derived in Einstein’s orig-
inal paper [6] is, in part, a manifestation of the light travel
time (LTT) effects and the consequence of imposing the
constancy of light speed in all inertial frames. This is most
obvious in the first thought experiment, where observers
moving with a rod find their clocks not synchronized due
to the difference in light travel times along the length of
the rod. However, in the current interpretation of SRT, the
coordinate transformation is considered a basic property of
space and time. One difficulty that arises from this formu-
lation is that the definition of the relative velocity between
the two inertial frames becomes ambiguous. If it is the ve-
locity of the moving frame as measured by the observer,
then the observed superluminal motion in radio jets start-
ing from the core region becomes a violation of SRT. If it is
a velocity that we have to deduce by considering LT effects,
then we have to employ the extra ad-hoc assumption that
superluminality is forbidden. These difficulties suggest that
it may be better to disentangle the light travel time effects
from the rest of SRT. Although not attempted in this pa-
per, the primary motivation for SRT, namely the covariance
of Maxwell’s equations, may be accomplished even without
attributing LTT effects to the properties of space and time.

In this section, we will consider space and time as a part
of the cognitive model created by the brain, and illustrate
that special relativity applies to the cognitive model. The
absolute reality (of which the SRT-like space-time is our
perception) does not have to obey the restrictions of SRT. In
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particular, objects are not restricted to subluminal speeds,
but they may appear to us as though they are restricted to
subluminal speeds in our perception of space and time.

SRT seeks a linear coordinate transformation between co-
ordinate systems in motion with respect to each other. We
can trace the origin of linearity to a hidden assumption on
the nature of space and time built into SRT, as stated by
Einstein [6]: “In the first place it is clear that the equations
must be linear on account of the properties of homogeneity
which we attribute to space and time.” Because of this as-
sumption of linearity, the original derivation of the transfor-
mation equations ignores the asymmetry between approach-
ing and receding objects and concentrates solely on receding
objects. Both approaching and receding objects can be de-
scribed by two coordinate systems that are always receding
from each other. For instance, if a system K is moving with
respect to another system k along the positive X axis of k,
then an object at rest in K at a positive x is receding while
another object at a negative x is approaching an observer at
the origin of k. Unlike SRT, considerations based on LTT
effects result in intrinsically different set of transformation
laws for objects approaching an observer and those reced-
ing from him. More generally, the transformation depends
on the angle between the velocity of the object and the ob-
server’s line of sight. Since the transformation equations
based on LTT effects treat approaching and receding ob-
jects asymmetrically, they provide a natural solution to the
twin paradox, for instance.

A. First Order Perceptual Effects

For approaching and receding objects, the relativistic ef-
fects are second order in speed β and speed typically ap-
pears as

√
1− β2. The light travel time effects, on the

other hand, are first order in speed. The first order ef-
fects have been studied in the last fifty years in terms of
the appearance of a relativistically moving extended body
[7, 8, 9, 10, 11, 12, 13, 14, 15]. It has also been suggested
that the relativistic Doppler effect can be considered the ge-
ometric mean [16] of more basic calculations. The current
belief is that the first order effects are an optical illusion to
be taken out of our perception of reality. Once these effects
are taken out or “deconvoluted” from the observations, the
“real” space and time are assumed to obey SRT. Note that
this assumption is impossible to verify because the deconvo-
lution is an ill-posed problem — there are multiple solutions
to the absolute reality that all result in the same perceptual
picture. Not all the solutions obey SRT.

The notion that it is the absolute reality that obeys SRT
ushers in a deeper philosophical problem. This notion is
tantamount to insisting that space and time are in fact “in-
tuitions” beyond sensory perception rather than a cognitive
picture created by our brain out of the sensory inputs it re-
ceives. A formal critique of the Kantian intuitions of space
and time is beyond the scope of this article. Here, we take
the position that it is our observed or perceived reality that
obeys SRT and explore where it leads us. In other words, we
assume that special relativity is nothing but a formalization

of the perceptual effects. These effects are not first order in
speed when the object is not directly approaching (or reced-
ing from) the observer, as we will see later. We will show in
this article that a treatment of SRT as a perceptual effect
will give us natural solution for astrophysical phenomena
like gamma ray bursts and symmetric radio jets.

B. Perception of Speed

We first look at how the perception of motion is modu-
lated by LTT effects. As remarked earlier, the transforma-
tion equations of SRT treat only objects receding from the
observer. For this reason, we first consider a receding object,
flying away from the observer at a speed β = v/c, where c
is the speed of light. The apparent speed βO of the object
depends on the real speed β (as shown in Appendix A 1):

βO =
β

1 + β

lim
β→∞

βO = 1

This showns that LTT effects map an infinite real velocity
to an apparent velocity βO = 1. In other words, no object
can appear to travel faster than the speed of light, entirely
consistent with SRT.

Physically, this apparent speed limit amounts to a map-
ping of c to ∞. This mapping is most obvious in its con-
sequences. For instance, it takes an infinite amount of en-
ergy to accelerate an object to an apparent speed βO = 1
because, in reality, we are accelerating it to an infinite
speed. This infinite energy requirement can also be viewed
as the relativistic mass changing with speed, reaching ∞
at βO = 1. Einstein explained this mapping as: “For ve-
locities greater than that of light our deliberations become
meaningless; we shall, however, find in what follows, that
the velocity of light in our theory plays the part, physically,
of an infinitely great velocity.”

For objects receding from the observer, the effects of LTT
are almost identical to the consequences of SRT, in terms
of the perception of speed.

C. Time Dilation

LTT effects influence the way time at the moving object
is perceived. Imagine an object receding from the observer
at a constant rate. As it moves away, the successive photons
emitted by the object take longer and longer to reach the
observer because they are emitted at farther and farther
away. This travel time delay gives the observer the illusion
that time is flowing slower for the moving object. It can
be easily shown (see Appendix A 2) that the time interval
observed ∆tO is related to the real time interval ∆t as:

∆tO
∆t

=
1

1− βO

for an object receding from the observer. This observed time
dilation is plotted in figure 1, where it is compared to the
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FIG. 1: Comparison between light travel time (LTT) effects and
the predictions of the special theory of relativity (SRT). The X-
axis is the apparent speed and the Y-axis shows the relative time
dilation or length contraction.

time dilation predicted in SRT. Note that the time dilation
due to LTT has a bigger magnitude than the one predicted
in SRT. However, the variation is similar, with both time
dilations tending to ∞ as the observed speed tends to c.

D. Length Contraction

The length of an object in motion also appears different
due to LTT effects. It can be shown (see Appendix A 3)
that observed length do is related to the real length d as:

do

d
= 1− βO

for an object receding from the observer with an apparent
speed of βO. This equation also is plotted in figure 1. Note
again that the LTT effects are stronger than the ones pre-
dicted in SRT.

Figure 1 illustrates that both time dilation and Lorentz
contraction can be thought of as LTT effects. While the
actual magnitudes of LTT effects are larger than what SRT
predicts, their qualitative behavior as a function of speed is
almost identical. This similarity is not surprising because
the coordinate transformation in SRT is partly based on
light travel time effects. If LTT effects are to be applied,
as an optical illusion, on top of the consequences of SRT as
currently believed, then the total observed length contrac-
tion and time dilation will be significantly more than the
SRT predictions.

E. Doppler Shift

The Doppler shift is one of the few dynamic properties of a
celestial object that we can measure directly. The measured
redshift is easily translated to a speed, yielding a view of an
expanding universe. As shown in Appendix A 4, the redshift
1 + z depends on the real and apparent speeds as follows:

1 + z =
1

1 + βO cos θ

= 1 − β cos θ

where β is the real speed of the object, and βO is its apparent
speed. For a receding object (θ = π) moving at subluminal
speeds (β < 1), we can rewrite this equation as:

1 + z =

√
1 + β

1 − β

if we were to mistakenly assume that the speed we observe
is the real speed (β = βO). This is the familiar relativistic
Doppler shift formula. Although setting βO = β breaks
down the derivation of these equations, it is interesting that
we get the relativistic Doppler shift formula. This similarity
in the form of the final equations is indicative of the common
basis in their origin.

III. LTT EFFECTS FOR APPROACHING
OBJECTS

A. Asymmetric Effects

One important feature of LTT effects is that they are
asymmetric in their dependence on speed; β and βO appear
in odd power, so that the equations are odd. More generally,
there is a term involving the angle θ between the object’s ve-
locity and the observer’s line of sight. In SRT, on the other
hand, β almost always appears as β2 and the equations are
even. SRT treats the effect of motion as a linear coordi-
nate transformation, ignoring the angle. In SRT therefore
the effect is the same whether the object is approaching or
receding from the observer. As remarked before, this funda-
mental difference can be traced back to the assumed homo-
geneity of space and time in SRT. The asymmetry in LTT
effects, on the other hand, provides convincing explanations
to certain paradoxes: the twin paradox, the observed super-
luminal motion, the causality violation due to superluminal
motion etc. At the same time, the asymmetry makes it
difficult to reconcile LTT effects and SRT completely.

B. Time Contraction and Length Expansion

The asymmetric consequences of LTT effects include an
apparent time contraction. When an object is approach-
ing the observer, the time at the object seems to flow at
an accelerated rate for the observer. This effect is easy to
understand because, as the object is approaching the ob-
server, the successive photons are emitted at shorter and
shorter distances and they take less and less time to reach
the observer, creating an illusion of an accelerated time flow,
or time contraction.

By the same argument, the moving object appears elon-
gated along the direction of motion as it is flying towards
the observer. Appendices A 2 and A 3 show the mathemat-
ical details of how LTT effects result in an apparent time
contraction and length expansion. If ∆tO is the apparent
time duration as felt by the observer and ∆t is the real time,
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then:

∆tO
∆t

=
1

1 + βO

Similarly, an object of real length d appears to have an
elongated length do as given by:

do

d
= 1 + βO

Note that relativistic expressions for time dilation and
length contraction are geometric means of LTT effects for
receding and approaching coordinate systems. The reason
is that in SRT, the coordinate transformation in SRT is
derived using the to and fro travel time of light. In our
calculations based on LTT, we consider only one way travel
of light (from the moving object to the observer).

C. Higher Order Perceptual Effects

As mentioned before, SRT seeks a linear transformation
between the observer’s coordinate system and the system
in motion. By contrast, the light travel time effects have
a term involving the angle (θ) between the observer’s line
of sight and the velocity vector of the moving object. Due
to the angle term, the equations for the apparent time and
length are inherently non-linear. It is impossible to write
them in the form of a transformation matrix as x′ = Lx
where x′ is the observed coordinates, x the “real” coordi-
nates in the rest frame of the moving object and L is some
transformation matrix.

We can demonstrate both the non-linearity and the higher
order perceptual effects by looking at the equation for time
dilation (from Appendix A 2).

∆tO
∆t

= 1− β cos θ

This can be rewritten as:

∆tO
∆t

= 1− β2 t c

y
− β4 t3 c3

2 y3

Similarly, the apparent length of an extended object is mo-
tion depends on the real length (Appendix A 3) can be
rewritten as:

∆do

∆d
=

1

1− β2 t c
y − β4 t3 c3

2 y3

In these equations, y represents the distance of closest ap-
proach of the object to the observer. If we think of the
moving object in terms of a coordinate system in motion
as in SRT, then the origin of this system in motion has the
coordinates (β t c, y, 0) in the observer’s system. Thus the
higher order dependence in the LTT effects comes from the
terms involving y. In SRT, due to the assumption of linear-
ity, the moving coordinate system is assumed to have the
origin (β t c, 0, 0). The higher order effects in SRT originate

from the assumptions of constancy of the speed of light and
the redefinition of simultaneity.

Our argument in this article is that our perception of
space and time is merely a cognitive representation. As
shown above, it is a fallacy to assume that the light travel
time (LTT) effects are merely first order effects that apply
to an underlying space-time that obeys SRT. They are not
some optical effects that can be taken out, nor are they
first order effects in speed. The LTT effects are, in fact,
the basic properties of space and time, for space and time
are the end results of cognitive processes starting from our
sensory inputs. Given that over 70% of the sensors in our
bodies are dedicated to sight, it is fair to say that our reality
is visual in nature, and that the light travel time effects are
the most critical property of our space and time.

IV. EXPLANATIONS BASED ON LTT EFFECTS

A. Twin Paradox

The famous twin paradox in SRT exploits the symmetry
in its coordinate transformation. In this paradox, one twin
goes away to a galaxy far away, accelerating to speeds close
to c. The other one stays back on earth. When the traveling
twin comes back (again accelerating to almost c on the way),
he will be much younger than the twin that stays back,
due to time dilation. But in the traveling twin’s frame of
reference, it is the other twin (along with the earth) that
is traveling at speeds close to c. Thus, time dilation should
apply to the one that stays back. This paradox is usually
explained away by arguing that the traveling twin feels the
tremendous acceleration and deceleration, and his frame of
reference is not an inertial frame.

In the LTT picture, the time dilation equation is asym-
metric. Whatever time dilation one twin seems to feel on
the way out is compensated by an exactly same amount of
contraction on his way back. Thus, to each of the twins, the
other twin seems to be enjoying the benefits of time dila-
tion and aging slower. But this time dilation happens only
during the outward journey, when the twins are going away
from each other. On his way back, the traveling twin will
see the other twin aging much faster. At the same time, to
the twin that stays back, the traveling twin will appear to
be aging much faster. When they meet again, there will not
be any age difference.

B. Superluminality and Causality

Although superluminality is generally believed to lead to
time travel and the consequent causality violations, SRT
does not explicitly state this. As quoted earlier, Einstein
merely remarked that “our deliberations become meaning-
less” at superluminal speeds. In any case, we saw that for a
receding object, the apparent speed could never be superlu-
minal. And SRT considers only receding frames of reference.
In our derivations of LTT effects on length contraction and
time dilation, we did not impose the condition that β < 1.
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Using our equation for time dilation, for an approaching
object, θ = 0.

∆tO
∆t

= 1− β

Thus, if the object is flying to the observer, up to the speed
of light (0 < β < 1), the time intervals appear shorter and
shorter. When the speed of approach exceeds c, the appar-
ent time flows backwards. This is because a photon emit-
ted at a particular point along the trajectory reaches the
observer before a photon emitted earlier and farther away.
The order in which photons emitted by the object reach
the observer is reversed. This reversal of time flow will give
rise to an apparent violation of causality. This violation of
causality is only an LTT effect (akin to a video clip play-
ing backwards), not a fundamental property of space and
time as currently believed. Note, however, that astrophys-
ical causality violations may not be obvious. For instance,
imagine a cataclysmic explosion of a star and a subsequent
fireball. This scenario played backwards would be a implod-
ing fireball and an appearance of a star. We may think of
it as the accretion of matter by an invisible massive object
or the birth of a star, instead of an event showing causality
violation.

C. Superluminal Motion

1 2 3 4

-1

-0.5

0.5

1

S
O

V2

V1

θ

FIG. 2: Illustration of the traditional explanation for the ob-
served superluminal motion. An object expanding at a speed
β = 0.8, starting from a single point S. The solid circle repre-
sents the boundary one second later. The observer is far away
on the right hand side, O (x → ∞). The dashed ellipse is the
apparent boundary of the object, as seen by the observer.

We can measure the transverse velocity of a celestial ob-
ject almost directly using angular measurements (which are
translated to a speed using its known or estimated distance
from us). In the past few decades, scientists have observed
[3, 4] objects moving at transverse velocities significantly
higher than the speed of light. Some such superluminal ob-
jects were detected within our own galaxy [17, 18, 19, 20].
Rees [5] offered an explanation why such observations mo-
tion were not in disagreement with SRT based on LTT ef-
fects, even before the phenomenon was discovered. Note,
however, that this observed superluminality needs to be ex-
plained only because of the current interpretation of special

relativity (SRT) as the basic law of space and time. If SRT
is interpreted as a perceptual effect on our cognitive model
of space and time (as opposed to the absolute reality giv-
ing rise to the sensory perception leading to the cognitive
model), then the observed superluminality not any strange
phenomenon demanding explanation. This is the view we
propose in this article, in our picture of SRT being a mani-
festation of light travel time effects (LTT). We do not need
to impose the speed limit of c in our picture of the absolute
reality.

The distortion in the perception of speed, when the ob-
ject is approaching the observer, is used to explain that the
observed superluminal motion is an optical effect. Figure 2
illustrates the explanation as described in the seminal paper
by Rees [5]. In this figure, the object at S is expanding radi-
ally at a constant speed of 0.8c, a highly relativistic speed.
The part of the object expanding along the direction V1,
close to the line of sight of the observer, will appear to be
traveling much faster, resulting in an observed transverse
velocity that is much larger.

Imagine an object in motion at a speed β. To an observer,
it appears to move with a speed of βO. The apparent speed
βO of the object depends on the real speed β and the angle
between its direction of motion and the observer’s line of
sight, θ. As shown in Appendix A 1,

βO =
β

1 − β cos θ
(1)

Figure 2 is a representation of equation (1) as cos θ is
varied over its range. It is the locus of βO for a constant
β = 0.8, plotted against the angle θ. The apparent speed
is in complete agreement with what was predicted in 1966
(Figure 1 in the original article, Rees [5]).

For a narrow range of θ, the transverse component of the
apparent velocity (βO sin θ ) can appear superluminal, even
if we restrict the real speed to be subluminal (β < 1 ). From
equation (1), it is easy to find this range:

1−
√

2β2 − 1
2β

< cos θ <
1 +

√
2β2 − 1
2β

(2)

Thus, for appropriate values of β(> 1√
2
) and θ (as given in

equation (2)), the transverse velocity of an object can seem
superluminal, even when the real speed is subluminal.

While equations (1) and (2) explain the observed trans-
verse superluminal motion, the difficulty arises in the re-
cessional side. Along directions such as V2 in figure 2, the
apparent velocity is always smaller than the real velocity.
It can be shown that the apparent velocity of the slower
jet can never be more than the reciprocal of the faster jet,
if the real speeds are to be subluminal. This calculation
is shown in Appendix sec:jet. Thus, superluminality can
never be observed in both the jets of a radio source, which
indeed has not been reported so far. Near exact symmetry
in extragalactic radio sources, including subluminal jets, is
also qualitatively inconsistent with this explanation.
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FIG. 3: The radio jet and lobes in the hyperluminous radio
galaxy Cygnus A. The hotspots in the two lobes, the core re-
gion and the jets are clearly visible. (Reproduced from an image
courtesy of NRAO/AUI.)

D. Symmetric Radio Sources

If we accept that special relativity applies to our cogni-
tive map of reality or the perceived space and time, and
that the absolute reality, of which space and time are our
perception, is free of the constraints of SRT, we can find el-
egant descriptions of symmetric radio sources and jets. Dif-
ferent classes of such objects associated with Active Galac-
tic Nuclei (AGN) were found in the last fifty years. Fig-
ure 3 shows the radio galaxy Cygnus A [21], an example
of such a radio source and one of the brightest radio ob-
jects. Many of its features are common to most extragalac-
tic radio sources: the symmetric double lobes, an indication
of a core, an appearance of jets feeding the lobes and the
hotspots. Owsianik and Conway [22] and Polatidis et al.
[23] have reported more detailed kinematical features, such
as the proper motion of the hotspots in the lobes. Here, we
show that our perception of an object crossing our field of
vision at a constant superluminal speed is remarkably sim-
ilar to a pair of symmetric hotspots departing from a fixed
point with a decelerating rate of angular separation.

Consider an object moving at a superluminal speed as
shown in figure 4(a). The point of closest approach is B.
At that point, the object is at a distance of y from the
observer at O. Since the speed is superluminal, the light
emitted by the object at some point B′ (before the point
of closest approach B) reaches the observer before the light
emitted at A′−. This reversal creates an illusion of the object
moving in the direction from B′ to A′−, while in reality it is
moving in the opposite direction from A′− to B′. This effect
is better illustrated using an animation [24].

We use the variable tO to denote the observer’s time. Note
that, by definition, the origin in the observer’s time axis is
set when the object appears at B. ϕ is the observed angle
with respect to the point of closest approach B. ϕ is defined
as θ−π/2 where θ is the angle between the object’s velocity
and the observer’s line of sight. ϕ is negative for negative
time t.

Appendix A 5 readily derives a relation between tO and

t = 0

t

x
A

O

x

A' B
θ

y

θ

ϕ

β

−ϕ

B'

0 t

O

Time < 0

B

ϕ0

Φ

B'J1 J2

t − 1
β

Observer's time
Increasing

Observer's time
Increasing

(a)

(b)

O

O

O

_

_

_

_

FIG. 4: The top panel (a) shows an object flying along A′
−BA

at a constant superluminal speed. The observer is at O. The
object crosses B (the point of closest approach to O) at time
t = 0. The bottom panel (b) shows how the object is perceived
by the observer at O. It first appears at B′, then splits into
two. The two apparent objects seem to go away from each other
(along J1 and J2) as shown.

ϕ.

tO = y

(
tanϕ

β
+

1
cos ϕ

− 1
)

(3)

Here, we have chosen units such that c = 1, so that y is
also the time light takes to traverse BO. The origin of the
observer’s time is set when the observer sees the object at
B. i.e., tO = 0 when the light from the point of closest
approach B reaches the observer.

The actual plot of ϕ as a function of the observer’s time
is given in figure 5 for different speeds β. Note that for
subluminal speeds, there is only one angular position for
any given tO. For subluminal objects, the observed angular
position changes almost linearly with the observed time,
while for superluminal objects, the change is parabolic. The
time axis scales with y.

Equation (3) can be approximated using a Taylor series
expansion as:

tO ≈ y

(
ϕ

β
+

ϕ2

2

)
(4)

From the quadratic equation (4), one can easily see that the
minimum value of tO is tOmin = −y/2β2 and it occurs at
ϕ0 = −1/β. Thus, to the observer, the object first appears
(as though out of nowhere) at the position ϕ0 at time tOmin.
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Then it appears to stretch and split, rapidly at first, and
slowing down later.

The angular separation between the objects flying away
from each other is:

Φ =
2
β

√
1 +

2β2

y
tO =

2
β

(1 + βϕ)

And the rate at which the separation occurs is:

dΦ
dtO

=

√
2

ytage
=

2β

y (1 + βϕ)

where tage = tO− tOmin, the apparent age of the symmetric
object. (The derivations of these equations can be found in
Appendix A 5.)
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FIG. 5: The apparent angular positions of an object traveling at
different speeds at a distance y of one million light years from
us. The angular positions (ϕ in radians) are plotted against the
observer’s time tO in years.

This discussion shows that a single object moving across
our field of vision at superluminal speed creates an illusion
of an object appearing at a certain point in time, stretch-
ing and splitting into two and then moving away from each
other. This time evolution of the two objects is given in
equation (3), and illustrated in the bottom panel of fig-
ure 4(b). Note that the apparent time tO (as perceived by
the observer) is reversed with respect to the real time t in
the region A− to B′. An event that happens near B′ appears
to happen before an event near A−. Thus, the observer may
see an apparent violation of causality, but it is only a part
of the light travel time effect.

If there are multiple objects, moving as a group, at
roughly constant superluminal speed along the same direc-
tion, they will appear as a series of objects materializing
at the same angular position and moving away from each
other sequentially, one after another. The apparent knot in
one of the jets always has a corresponding knot in the other
jet. In fact, the appearance of a superluminal knot in one of
the jets with no counterpart in the opposite jet, or a clear
movement in the angular position of the “core” (at point
B′) will invalidate our model.

E. Redshifts of the Hotspots

In the previous section, we showed how a superluminal
object appears as two objects receding from a core. Now
we consider the time evolution of the redshift of the two ap-
parent objects (or hotspots). Since the relativistic Doppler
shift equation is not appropriate for our considerations, we
need to work out the relationship between the redshift (z)
and the speed (β) from first principles. This calculation is
done in Appendix A 4:

1 + z = |1 − β cos θ|
= |1 + β sinϕ|

=

∣∣∣∣∣1 +
β2t√

β2t2 + y2

∣∣∣∣∣ (5)

We can explain the radio frequency spectra of the
hotspots as extremely redshifted black body radiation be-
cause β can be enormous in our model of extragalactic radio
sources. Note that the limiting value of |1 + z| is approxi-
mately equal to β, which gives an indication of the speeds
required to push the black body radiation of a typical star
to the RF region. Since the speeds (β) involved are typically
extremely large, and we can approximate the redshift as:

1 + z ≈ |βϕ| ≈ |βΦ|
2

Assuming the object to be a black body similar to the
sun, we can predict the peak wavelength (defined as the
wavelength at which the luminosity is a maximum) of the
hotspots as:

λmax ≈ (1 + z)480nm ≈ |βΦ|
2

480nm

where Φ is the angular separation between the two hotspots.
This equation shows that the peak RF wavelength in-

creases linearly with the angular separation. If multiple
hotspots can be located in a twin jet system, their peak
wavelengths will depend only on their angular separation,
in a linear fashion. Such a measurement of the emission
frequency as ϕ increases along the jet is clearly seen in the
photometry of the jet in 3C 273 [25]. Furthermore, if the
measurement is done at a single wavelength, intensity vari-
ation can be expected as the hotspot moves along the jet.
In other words, measurements at higher wavelengths will
find the peak intensities farther away from the core region,
which is again consistent with observations.

F. Gamma Ray Bursts

The evolution of redshift of the thermal spectrum of a su-
perluminal object also holds the explanation for gamma ray
bursts (GRBs). γ ray bursts are short and intense flashes of
γ rays in the sky, lasting from a few milliseconds to several
minutes [26]. The short flashes (the prompt emissions) are
followed by an after-glow of progressively softer energies.
Thus, the initial γ rays are promptly replaced by X-rays,
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light and even radio frequency waves. This softening of the
spectrum has been known for quite some time [27], and was
first described using a hypernova (fireball) model. In this
model, a relativistically expanding fireball produces the γ
emission, and the spectrum softens as the fireball cools down
[28]. The model calculates the energy released in the γ re-
gion as 1053–1054 ergs in a few seconds. This energy output
is similar to about 1000 times the total energy released by
the sun over its entire lifetime.

More recently, an inverse decay of the peak energy with
varying time constant has been used to empirically fit the
observed time evolution of the peak energy [29, 30] using a
collapsar model. According to this model, GRBs are pro-
duced when the energy of highly relativistic flows in stellar
collapses are dissipated, with the resulting radiation jets
angled properly with respect to our line of sight. The col-
lapsar model estimates a lower energy output because the
energy release is not isotropic, but concentrated along the
jets. However, the rate of the collapsar events has to be
corrected for the fraction of the solid angle within which
the radiation jets can appear as GRBs. GRBs are observed
roughly at the rate of once a day. Thus, the expected rate
of the cataclysmic events powering the GRBs is of the order
of 104–106 per day. Because of this inverse relationship be-
tween the rate and the estimated energy output, the total
energy released per observed GRB remains the same.

Symmetric radio sources (galactic or extragalactic) and
GRBs may appear to be completely distinct phenomena.
However, their cores show a similar time evolution in the
peak energy, but with vastly different time constants. The
spectra of GRBs rapidly evolve from γ region to an optical
or even RF after-glow, similar to the spectral evolution of
the hotspots of a radio source as they move from the core to
the lobes. Other similarities have begun to attract attention
in the recent years [31]. Treating GRB as a manifestation of
the light travel time results in a model that unifies these two
phenomena and makes detailed predictions of their kinemat-
ics.

The evolution of GRB can be made quantitative because
we know the dependence of the observer’s time tO and the
redshift 1+z on the real time t (equations (3) and (5)). From
these two, we can deduce the observed time evolution of the
redshift (see Appendix A 6). We have plotted it paramet-
rically in figure 6 that shows the variation of redshift as a
function of the observer’s time (tO). The figure shows that
the observed spectra of a superluminal object is expected
to start at the observer’s time tOmin with heavy (infinite)
blue shift. The spectrum of the object rapidly softens and
soon evolves to zero redshift and on to higher values. The
rate of softening depends on the speed of the underlying su-
perluminal object and its distance from us. The speed and
the distance are the only two parameters that are different
between GRBs and symmetric radio sources in our model.

Note that the X axis in figure 6 scales with time. We have
plotted the variation of the redshift (1+z) of an object with
β = 300 and y = ten million light years, with X axis is tO in
years. It is also the variation of the redshift of an object at
y = ten million light seconds (or 116 light days) with X axis
in seconds. The former corresponds to symmetric jets and

-50 50 100 150 200 250 300

0.5

1

1.5

2

2.5 Red Shift
1+z

Observer's time tO

FIG. 6: Time evolution of the redshift from a superluminal ob-
ject. It shows the redshifts expected from an object moving at
β = 300 at a distance of ten million light years from us. The
X axis is the observer’s time in years. (Since the X axis scales
with time, it is also the redshift from an object at 116 light days
–ten million light seconds– with the X axis representing tO in
seconds.)

the latter to a GRB. Thus, for a GRB, the spectral evolution
takes place at a much faster pace. Different combinations
of β and y can be fitted to describe different GRB spectral
evolutions.

The observer sees no object before tOmin. In other
words, there is a definite point in the observer’s time when
the GRB is “born”, with no indication of its impending
birth before that time. This birth does not correspond to
any cataclysmic event (as would be required in the collap-
sar/hypernova or the “fireball” model) at the distant object.
It is nothing but an artifact of our perception.

In order to compare the time evolution of the GRB spec-
tra to the ones reported in the literature, we need to get
an analytical expression for the redshift (z) as a function of
the observer’s time (tO). This can be done by eliminating
t from the equations for tO and 1 + z (equations (3) and
(5)), with some algebraic manipulations as shown in Ap-
pendix A 6. The algebra can be made more manageable by
defining τ = y/β, a characteristic time scale for the GRB (or
the radio source). This is the time the object would take to
reach us, if it were coming directly toward us. We also define
the age of the GRB (or radio source) as tage = tO − tOmin.
This is simply the observer’s time (tO) shifted by the time
at which the object first appears to him (tOmin). With these
notations (and for small values t), it is possible to write the
time dependence of z as:

1 + z =

∣∣∣∣∣1 +
β2

(
−τ ±

√
2βtage

)
βtage + τ/2∓

√
2βtage + β2τ

∣∣∣∣∣ (6)

for small values of t� τ .
Since the peak energy of the spectrum is inversely pro-
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portional to the redshift, it can be written as:

Epk(tage) =
Epk(tOmin)

1 + C1

√
tage
τ + C2

tage
τ

(7)

where C1 and C2 are coefficients to be estimated by the
Taylor series expansion of equation (6) or by fitting.

Ryde and Svensson [32] have studied the evolution of the
peak energy (Epk(t)), and modeled it empirically as:

Epk(t) =
Epk,0

(1 + t/τ)δ
(8)

where t is the time elapsed after the onset (= tage in our
notation), τ is a time constant and δ is the hardness in-
tensity correlation (HIC). Ryde and Svensson [32] reported
seven fitted values of δ. We calculate their average as
δ = 1.038 ± 0.014, with the individual values ranging from
0.4 to 1.1. Although it may not rule out or validate either
model within the statistics, the δ reported may fit better
to equation (7). Furthermore, it is not an easy fit because
there are too many unknowns. However, the similarity be-
tween the shapes of equations (7) and (8) is remarkable, and
points to the agreement between our model and the existing
data.

G. Expansion of the Universe

Our perception of superluminal motion also leads to the
appearance of an expanding universe. The expansion of the
universe is inferred by the redshift measurements of reces-
sional speeds. The apparent recessional speed is the lon-
gitudinal component of βO is βO‖ = βO cos θ. From equa-
tion (1), we can see that

βO‖ = βO cos θ =
β cos θ

1 − β cos θ

lim
β→±∞

βO‖ = −1

The apparent recessional speed tends to c (or, βO‖ → −1),
when the real speed is highly superluminal. This limiting
value of βO‖ is independent of the actual direction of motion
of the object θ. Thus, whether a superluminal object is
receding or approaching (or, in fact, moving in any other
direction), its appearance from our perspective will be that
of an object receding from us roughly at the speed of light.

The recessional speeds are measured using redshifts that,
by equation (9), tend to large values as βO‖ → −1.

1 + z =
1

1 + βO cos θ

=
1

1 + βO‖
(9)

Thus, the appearance of all (possibly superluminal) objects
receding from us at strictly subluminal speeds is an arti-
fact of our perception, rather than the true nature of the
universe.

H. Cosmic Microwave Background Radiation

The red shift of celestial objects 1 + z also has an inter-
esting limiting value at large angles, and for superluminal
speeds.

1 + z = |1 + β sinϕ|
lim

ϕ→±π/2
1 + z = |1 + β| ≈ β

Thus, if we picture our universe as a large number of su-
perluminal or hyperluminal objects moving around in ran-
dom directions, there will be a significant amount of low
energy isotropic electromagnetic radiation. A low energy
isotropic spectrum is remarkably similar to the cosmic mi-
crowave background radiation (CMBR). Thus, CMBR can
be explained if we think of our visual reality as being limited
by the light travel time effects. Note than it is not only our
perception that gets fooled by the LTT effects, our mea-
surement instruments also work at the speed of light and
are subject to the same constraints.

V. CONCLUSIONS

In this article, we started with an insight from cognitive
neuroscience about the nature of reality. Reality is a conve-
nient representation that our brain creates out of our sen-
sory inputs. This representation, though convenient, is an
incredibly distant experiential mapping of the actual phys-
ical causes that make up the inputs to our senses. Fur-
thermore, limitations in the chain of sensing and perception
map to measurable and predictable manifestations to the re-
ality we perceive. One such fundamental constraint to our
perceived reality is the speed of light, and the correspond-
ing manifestations are generally termed the light travel time
(LTT) effects. Because space and time are a part of a reality
created out of light inputs to our eyes, some of their proper-
ties are manifestations of LTT effects, especially on our per-
ception of motion. The absolute, physical reality generating
the light inputs does not obey the properties we ascribe to
our perceived space and time. We showed that LTT ef-
fects are qualitatively identical to those of SRT, noting that
SRT only considers frames of reference receding from each
other. This similarity is not surprising because the coordi-
nate transformation in SRT is derived based partly on LTT
effects, and partly on the assumption that light travels at
the same speed with respect to all inertial frames. In treat-
ing it as a manifestation of LTT, we did not address the
primary motivation of SRT, which is a covariant formula-
tion of Maxwell’s equations, as evidenced by the opening
statements of Einstein’s original paper [6]. It may be pos-
sible to disentangle the covariance of electrodynamics from
the coordinate transformation, although it is not attempted
in this article.

Unlike SRT, LTT effects are asymmetric. This asymme-
try provides a resolution to the twin paradox and an in-
terpretation of the assumed causality violations associated
with superluminality. Furthermore, the perception of su-
perluminality is modulated by LTT effects, and explains γ
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ray bursts and symmetric jets. As we showed in the article,
perception of superluminal motion also holds an explana-
tion for cosmological phenomena like the expansion of the
universe and cosmic microwave background radiation. LTT
effects should be considered as a fundamental constraint in
our perception, and consequently in physics, rather than
as a convenient explanation for isolated phenomena. Given
that our perception is filtered through LTT effects, we have
to deconvolute them from our perceived reality in order to
understand the nature of the absolute, physical reality. This
deconvolution, however, results in multiple solutions. Thus,
the absolute, physical reality is beyond our grasp, and any
assumed properties of the absolute reality can only be vali-
dated through how well the resultant perceived reality agrees
with our observations. In this article, we assumed that the
absolute reality obeys our intuitively obvious classical me-
chanics and asked the question how such a reality would be
perceived when filtered through light travel time effects. We
demonstrated that this particular treatment could explain
certain astrophysical and cosmological phenomena that we
observe. The distinction between the different notions of
velocity, including the proper velocity and the Einsteinian
velocity, was the subject matter of a recent article [33] in
this journal.

The coordinate transformation in SRT should be viewed
as a redefinition of space and time (or, more generally, real-
ity) in order to accommodate the distortions in our percep-
tion of motion due to light travel time effects. The absolute
reality behind our perception is not subject to restrictions
of SRT. One may be tempted to argue that SRT applies to
the “real” space and time, not our perception. This line of
argument begs the question, what is real? Reality is noth-
ing but a cognitive model created in our brain starting from
our sensory inputs, visual inputs being the most significant.
Space itself is a part of this cognitive model. The properties
of space are a mapping of the constraints of our perception.
We have no access to a reality beyond our perception. The
choice of accepting our perception as a true image of re-
ality and redefining space and time as described in special
relativity indeed amounts to a philosophical choice. The al-
ternative presented in the article is prompted by the view in
modern neuroscience that reality is a cognitive model in the
brain based on our sensory inputs. Adopting this alternative
reduces us to guessing the nature of the absolute reality and
comparing its predicted projection to our real perception. It
may simplify and elucidate some theories in physics and ex-
plain some puzzling phenomena in our universe. However,
this option is yet another philosophical stance against the
unknowable absolute reality.

APPENDIX A: MATHEMATICAL DETAILS

1. Perception of Speed

In this section, we derive how the perception of speed is
distorted due to the light travel time (LTT) effects. We will
show that the apparent speed is limited to the speed of light
when the object is receding from us.
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FIG. 7: The object is flying along BAA′, the observer is at O.
The object crosses B (the point of closest approach) at time
t = 0. It reaches A at time t. A photon emitted at A reaches O
at time tO, and a photon emitted at A′ reaches O at time tO

′.

In figure 7, there is an observer at O. An object is flying
by at a high speed v = βc along the horizontal line BAA′.
With no loss of generality, we can assume that t = 0 when
the object is at B, the point of closest approach. It passes
A at time t. The photon emitted at time t = 0 reaches the
observer at time t = tO, and the photon emitted at A′ (at
time t = t′) reaches him at time t = tO

′. The angle between
the object’s velocity at A and the observer’s line of sight is
θ. We have the Pythagoras equations:

z2 = x2 + y2

z′2 = x′2 + y2

⇒ x + x′

z + z′
=

z − z′

x− x′
(A1)

If we assume that x and z (distances at time t) are not very
different from x′ and z′ respectively (distances at time tO),
we can write,

− cos θ = sinϕ =
x

z
≈ x′ + x

z′ + z
=

z′ − z

x′ − x
(A2)

We define the real speed of the object as:

v = β c =
x′ − x

t′ − t
(A3)

But the speed it appears to have will depend on when the
observer senses the object at A and A′. The apparent speed
of the object is:

v′ = βO c =
x′ − x

tO
′ − tO

(A4)

We also have

tO = t +
z

c

tO
′ = t′ +

z′

c

⇒ tO
′ − tO = t′ − t +

z′ − z

c
(A5)



12 Thulasidas: Constraints of Perception Vol.?, No.?

Thus,

β

βO
=

tO
′ − tO

t′ − t

= 1 +
z′ − z

c(t′ − t)

= 1− x− x′

c(t′ − t)
cos θ

= 1− β cos θ (A6)

which gives,

βO =
β

1 − β cos θ

β =
βO

1 + βO cos θ
(A7)

and,

βO

β
=

1
1− β cos θ

= 1 + βO cos θ

=

√
1 + βO cos θ

1− β cos θ
(A8)

LTT effects modulate the way we perceive time at objects
in motion. Here we show that a receding object appears to
have a dilated time flow. From figure 7, we can see that
θ = π for an object receding from the observer. Thus, the
apparent speed of a receding object is:

βO =
β

1 + β

lim
β→±∞

βO = 1 (A9)

Thus, an object can never appear to be receding faster than
the speed of light.

2. Time Dilation

Referring to figure 7, we can see that the real time elapsed
as the object moves from A to A′ is:

∆t = t′ − t (A10)

This time period appears to the observer as:

∆tO = tO
′ − tO (A11)

Using the definitions of the real and apparent speeds as in
equations (A3) and (A4), we can write:

∆tO
∆t

=
β

βO

= 1− β cos θ

=
1

1 + βO cos θ
(A12)

where we used the known relationship between β and βO

from equation (A8).
For an object receding from the observer, θ = π and the

equation becomes:

∆tO
∆t

=
1

1− βO
(A13)

For an object approaching the observer, θ = 0 and the
equation becomes:

∆tO
∆t

=
1

1 + βO
(A14)

This shows a time contraction, instead of a time dilation.

3. Length Contraction
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FIG. 8: The object has a real length of d, and is shown as the
shaded ellipse. To the observer at O, it appears to have a length
of do due to LTT effects.

The perceived length of an object in motion is affected
due to LTT effects. In particular, a receding object appears
shorter. In figure 8, we have the object of real length d. The
perceived length of the object is the distance between the
leading edge and the trailing edge from which the photons
reach the observer at the same instant. In figure 8, it is
denoted by do. The photon emitted from the trailing edge
of the object when it is at x reaches the observer at O at
time tO. At the same time, a photon from the leading edge
at x′ reaches O. But when the leading edge is at x′, the
trailing edge is only at x′′ = x′ − d, due to the motion.

Since the object’s speed is v and the time starts when the
object passes B, we can write:

tO =
x

v
+

z

c

=
x′′

v
+

z′

c

=
x′ − d

v
+

z′

c
(A15)
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Using the equation for the apparent length of the object
do = x′ − x, we can rewrite this as:

z′ − z

c
=

x− x′ + d

v

=
d− do

v
(A16)

The approximation for cos θ in equation (A2) is still valid,
with the additional information that the apparent length of
the object do = x′ − x.

− cos θ =
z′ − z

do
(A17)

Thus, equation (A16) becomes:

− do cos θ =
d− do

β
(A18)

Or,

do

d
=

1
1− β cos θ

= 1 + βO cos θ

=
βO

β
(A19)

For an object receding from the observer, θ = π and the
equation becomes:

do

d
= 1− βO (A20)

For an object approaching the observer, θ = 0 and the
equation becomes:

do

d
= 1 + βO (A21)

which shows that the apparent length of the object is greater
than its real length.

4. Doppler Shift

Redshift (z) defined as:

1 + z =
λO

λ
(A22)

where λO is the measured wavelength and λ is the known
wavelength. In figure 7, the number of wave cycles created
in time t′−t between A and A′ is the same as the number of
wave cycles sensed at O between tO

′ and tO. Substituting
the values, we get:

(t′ − t) c

λ
=

(tO′ − tO) c

λO
(A23)

Using the definitions of the real and apparent speeds from
equations (A3) and (A4), it is easy to get:

λO

λ
=

β

βO
(A24)

Using the relationship between the real speed β and the
apparent speed βO from equation (A8), we get:

1 + z =
1

1 + βO cos θ

= 1 − β cos θ (A25)

As expected, z depends on the longitudinal component of
the velocity of the object. Since we allow superluminal
speeds in this calculation, we need to generalize this equa-
tion for z noting that the ratio of wavelengths is positive.
Taking this into account, we get:

1 + z =
∣∣∣∣ 1
1 + βO cos θ

∣∣∣∣
= |1 − β cos θ| (A26)

For a receding object θ = π. If we consider only subluminal
speeds, we can rewrite this as:

1 + z =
1

1 − βO

= 1 + β

(1 + z)2 =
1 + β

1 − βO

Or,

1 + z =

√
1 + β

1 − βO
(A27)

If we were to mistakenly assume that the speed we observe
is the real speed, then this becomes the relativistic Doppler
formula:

1 + z =

√
1 + β

1 − β
(A28)

5. Kinematics of Superluminal Objects

t = 0

t

x
A

O

x

A B
θ

y

θ

ϕ

β

−ϕ

B'- -

-

-

O

FIG. 9: An object flying along A−BA at a constant superluminal
speed. The observer is at O. The object crosses B (the point of
closest approach to O) at time t = 0.

The derivation of the kinematics is based on figure 9.
Here, an object is moving at a superluminal speed along
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A−BA. At the point of closest approach, B, the object is
a distance of y from the observer at O. Since the speed
is superluminal, the light emitted by the object at some
point B′ (before the point of closest approach B) reaches
the observer before the light emitted at A−. This gives an
illusion of the object moving in the direction from B′ to A−,
while in reality it is moving from A− to B′.

Observed angle ϕ is measured with respect to the point of
closest approach B and is defined as θ− π/2 where θ is the
angle between the object’s velocity and the observer’s line
of sight. ϕ is negative for negative time t. We choose units
such that c = 1 for simplicity and denote the observer’s time
by tO. Note that, by definition, the origin in the observer’s
time, tO is set to the instant when the object appears at B.

The real position of the object at any time t is:

x = y tanϕ = βt (A29)

Or,

t =
y tanϕ

β
(A30)

A photon emitted by the object at A (at time t) will reach
O after traversing the hypotenuse. A photon emitted at B
will reach the observer at t = y, since we have chosen c = 1.
Since we define the observer’s time tO such that the time of
arrival is t = tO + y, then we have:

tO = t +
y

cos ϕ
− y (A31)

which gives the relation between tO and ϕ.

tO = y

(
tanϕ

β
+

1
cos ϕ

− 1
)

(A32)

Expanding the equation for tO to second order, we get:

tO = y

(
ϕ

β
+

ϕ2

2

)
(A33)

The minimum value of tO occurs at ϕ0 = −1/β and it is
tOmin = −y/2β2. To the observer, the object first appears
at the position ϕ = −1/β. Then it appears to stretch and
split, rapidly at first, and slowing down later.

The quadratic equation (A33) can be recast as:

1 +
2β2

y
tO = (1 + βϕ)2 (A34)

which will be more useful later in the derivation.
The angular separation between the objects flying away

from each other is the difference between the roots of the
quadratic equation (A33):

Φ = ϕ1 − ϕ2

=
2
β

√
1 +

2β2

y
tO

=
2
β

(1 + βϕ) (A35)

t

ϕ

Φ(ϕ)

Φ(t  )

ϕ

t

O

O
O

FIG. 10: Illustration of how the angular separation is expressed
either in terms of the observer’s time (Φ(tO)) or the angular
position of the object (Φ(ϕ))

making use of equation (A34). Thus, we have the angular
separation either in terms of the observer’s time (Φ(tO)) or
the angular position of the object (Φ(ϕ)) as illustrated in
Figure 10.

The rate at which the angular separation occurs is:

dΦ
dtO

=
2β

y
√

1 + 2β2

y tO

=
2β

y (1 + βϕ)
(A36)

Again, making use of equation (A34). Defining the appar-
ent age of the radio source tage = tO − tOmin and knowing
tOmin = −y/2β2, we can write:

dΦ
dtO

=
2β

y
√

1 + 2β2

y tO

=
2β

y
√

1− tO
tOmin

=

√
4β2

y2
× −tOmin

tO − tOmin

=

√
2

y tage
(A37)

6. Time Evolution of the Redshift

As shown before in equation (A26), the redshift z depends
on the real speed β as:

1 + z = |1 − β cos θ| = |1 + β sinϕ| (A38)

For any given time (tO) for the observer, there are two solu-
tions for ϕ and z. ϕ1 and ϕ2 lie on either side of ϕ0 = 1/β.
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For sinϕ > −1/β, we get

1 + z2 = 1 + β sinϕ1 (A39)

and for sinϕ < −1/β,

1 + z1 = −1− β sinϕ2 (A40)

Thus, we get the difference in the redshift between the two
hotspots at ϕ1 and ϕ2 as:

∆z ≈ 2 + β(ϕ1 + ϕ2) (A41)

We also have the mean of the solutions of the quadratic (ϕ1

and ϕ2) equal to the position of the minimum (ϕ0):

ϕ1 + ϕ2

2
= − 1

β
(A42)

Thus ϕ1 +ϕ2 = −2/β and hence ∆z = 0. The two hotspots
will have identical redshifts, if terms of ϕ3 and above are
ignored.

As shown before (see equation (A38)), the redshift z de-
pends on the real speed β as:

1 + z = |1 + β sinϕ| =

∣∣∣∣∣1 +
β2t√

β2t2 + y2

∣∣∣∣∣ (A43)

Since we know z and tO functions of t, we can plot their
inter-dependence parametrically. This is shown in figure 6
of the article.

It is also possible to eliminate t and derive the dependence
of 1 + z on the apparent age of the object under considera-
tion, tage = tO − tmin. In order to do this, we first define a
time constant τ = y/β. This is the time the object would
take to reach us, if it were flying directly toward us. Keep-
ing in mind that the new variable is related to tage through
tOmin = −y/2β2 = −τ/β, let’s get an expression for t/τ :

tO = t +
√

β2t2 + y2 − y

= t + βτ

√
1 +

t2

τ2
− βτ

≈ t +
βt2

2τ

⇒ t

τ
=

−1±
√

1 + 2βtage
τ

β
(A44)

Note that this is valid only for t � τ . Now we collect the
terms in t/τ in the equation for 1 + z:

tO = t +
√

β2t2 + y2 − y

⇒
√

β2t2 + y2 = tO − t + y

1 + z =

∣∣∣∣∣1 +
β2t√

β2t2 + y2

∣∣∣∣∣
=

∣∣∣∣1 +
β2t

tO − t + y

∣∣∣∣
=

∣∣∣∣∣1 +
β2 t

τ
tage
τ − 1

2β −
t
τ + β

∣∣∣∣∣ (A45)

As expected, the time variables always appear as ratios like
t/τ , giving confidence that our choice of the characteristic
time scale is probably right. Finally, we can substitute t/τ
from equation (A44) in equation (A45) to obtain:

1 + z =

∣∣∣∣∣1 +
β2

(
−τ ±

√
2βtage

)
βtage + τ/2∓

√
2βtage + β2τ

∣∣∣∣∣ (A46)

7. Estimating Real Speed from Apparent Speed

d
ϕ

ϕ

β

β

θ

a

a

r
r

O

FIG. 11: Illustration of the real jet speeds (βa and βr), core
distance (d) and the angles.

In the traditional explanation of superluminality, super-
luminal objects such as GRS 1915+105 are assumed to be
two jets emanating from a core. The axis of the jets makes
an angle θ with respect to our line of sight. The only direct
kinematic measurements we have are the angular velocities
of features (or knots) in the jets. We have two angular rates,
µa and µr, for the approaching and receding jets. The dis-
tance of the core from us (d) is not known. Also unknown
are the real speeds of the jets βa and βr, which are usu-
ally assumed to be the same (β). The apparent transverse
speeds (βO

a
⊥ and βO

r
⊥) are different for the two jets. Thus,

we have the following definitions:

µa =
dϕa

dtO
(A47)

µr =
dϕr

dtO
(A48)

βO
a
⊥ = µa d (A49)

βO
r
⊥ = µr d (A50)

where tO is our time. Assuming the real jet speeds are the
same (βa = βr = β) and using the relationship between β
and βO from equation (A8), we have the following equations:

µa d =
β sin θ

1− β cos θ
(A51)

µr d =
β sin θ

1 + β cos θ
(A52)

There are three unknowns (β, θ and d) and only two equa-
tions. Thus, it is always possible to impose the relativis-
tic condition (β < 1) and compute corresponding limits
on θ and d. The only way to estimate the real speed or
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the angle is to have an independent (and, hopefully, model-
independent) measurement of d.

In order to find the limiting values of βO
a
⊥ and βO

r
⊥ under

the relativistic constraint, we set β → 1 in equations (A51)
and (A52).

βO
a
⊥ =

sin θ

1− cos θ
(A53)

βO
r
⊥ =

sin θ

1 + cos θ
(A54)

Or,

βO
a
⊥ =

sin θ

1− cos θ
(A55)

=

√
(1− cos θ)(1 + cos θ)

1− cos θ
(A56)

=

√
1 + cos θ

1− cos θ
(A57)

=
1 + cos θ√
1− cos2 θ

(A58)

=
1 + cos θ

sin θ
(A59)

=
1

βO
r
⊥

(A60)

Thus, if we assume that the real speeds are limited to β < 1,
the apparent transverse speed of the receding jet (βO

r
⊥) is

limited to the reciprocal of the apparent transverse speed of
the approaching jet (βO

a
⊥). As long as the measured angular

speeds of the two jets are different, one can always find an
estimated distance such that the reciprocal inequality holds
because the system of equations is under-constrained.
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